Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion.
نویسندگان
چکیده
Water expulsion from the protein core is a key step in protein folding. Nevertheless, unusually large water clusters confined into the nonpolar cavities have been observed in the X-ray crystal structures of tetrabrachion, a bacterial protein that is thermostable up to at least 403 K (130 degrees C). Here, we use molecular dynamics (MD) simulations to investigate the structure and thermodynamics of water filling the largest cavity of the right-handed coiled-coil stalk of tetrabrachion at 365 K (92 degrees C), the temperature of optimal bacterial growth, and at room temperature (298 K). Hydrogen-bonded water clusters of seven to nine water molecules are found to be thermodynamically stable in this cavity at both temperatures, confirming the X-ray studies. Stability, as measured by the transfer free energy of the optimal size cluster, decreases with increasing temperature. Water filling is thus driven by the energy of transfer and opposed by the transfer entropy, both depending only weakly on temperature. Our calculations suggest that cluster formation becomes unfavorable at approximately 384 K (110 degrees C), signaling the onset of drying just slightly above the temperature of optimal growth. "Drying" thus precedes protein denaturation. At room temperature, the second largest cavity in tetrabrachion accommodates a five water molecule cluster, as reported in the X-ray studies. However, the simulations show that at 365 K the cluster is unstable and breaks up. We suggest that the large hydrophobic cavities may act as binding sites for two proteases, possibly explaining the unusual thermostability of the resulting protease-stalk complexes (up to approximately 393 K, 120 degrees C).
منابع مشابه
Water clusters in nonpolar cavities.
We explore the structure and thermodynamics of water clusters confined in nonpolar cavities. By calculating the grand-canonical partition function term by term, we show that small nonpolar cavities can be filled at equilibrium with highly structured water clusters. The structural and thermodynamic properties of these encapsulated water clusters are similar to those observed experimentally in th...
متن کاملWater in the polar and nonpolar cavities of the protein interleukin-1β.
Water in the protein interior serves important structural and functional roles and is also increasingly recognized as a relevant factor in drug binding. The nonpolar cavity in the protein interleukin-1β has been reported to be filled by water on the basis of some experiments and simulations and to be empty on the basis of others. Here we study the thermodynamics of filling the central nonpolar ...
متن کاملEvaluation of Host-Guest Binding Thermodynamics of Model Cavities with Grid Cell Theory.
A previously developed cell theory model of liquid water was used to evaluate the excess thermodynamic properties of confined clusters of water molecules. The results are in good agreement with reference thermodynamic integration calculations, suggesting that the model is adequate to probe the thermodynamic properties of water at interfaces or in cavities. Next, the grid cell theory (GCT) metho...
متن کاملCooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.
Formation of a water-expelling nonpolar core is the paradigm of protein folding and stability. Although experiment largely confirms this picture, water buried in "hydrophobic" cavities is required for the function of some proteins. Hydration of the protein core has also been suggested as the mechanism of pressure-induced unfolding. We therefore are led to ask whether even the most nonpolar prot...
متن کاملA desolvation barrier to hydrophobic cluster formation may contribute to the rate-limiting step in protein folding.
To gain insight into the free energy changes accompanying protein hydrophobic core formation, we have used computer simulations to study the formation of small clusters of nonpolar solutes in water. A barrier to association is observed at the largest solute separation that does not allow substantial solvent penetration. The barrier reflects an effective increase in the size of the cavity occupi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 129 23 شماره
صفحات -
تاریخ انتشار 2007